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Abstract

In this paper, the numerical analytic solution for the fractional order hyperchaotic system is obtained the step
homotopy analysis method (SHAM). The fractional derivatives are describing by Caputo's sense. Exact and/or
approximate analytical solutions of these equations are obtained. An analytical form of the solution within each time
interval is given which is not possible using standard numerical method. The HAM contains a certain auxiliary
parameter h  which provides us with a simple way to adjust and control the convergence region and rate of
convergence of the series solution. Numerical results reveal that the step homotopy analysis method (SHAM)
method is a promising tool for the hyperchaotic fractional order systems. Copyright © acascipub.com, all rights
reserved.
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1- Introduction

Fractional differential equations FDEs have found applications in many problems in physics and engineering [1-4].
Since most of the nonlinear FDEs cannot be solved exactly, approximate and numerical methods must be used.
Some of the recent analytical methods for solving hyperchaotic systems has been obtained by different methods,

such as the the Adomian decomposition method ADM [5-6] and the differential transformation method [7].
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Recently, the homotopy analysis method HAM has become one of the most famous techniques to solve such
nonlinear problem. First proposed in 1992 by Liao [8]-[14], has been successfully applied to solve many problems in
physics and science. Many researches have applied this method for different classes of differential equations [15-
20]. M. Saad [21] used the idea of time step in the algorithm of HAM to obtain the step homotopy analysis method
SHAM and applied it to the Newton-Leipnik system.

Many hyperchaotic systems have been proposed and studied in the last few decades. The main difference between
the chaotic and hyperchaotic system is the Lyapunov exponent since the chaotic system has one positive Lyapunov
exponent while the hyperchaotic system has more than one positive Lyapunov exponent. Hongmin et al [22]
presented the hyperchaotic system as

D XU 2 XKW ) A1)
D% )00 XMW= ) WP W)
D% AW 20, AWM= b, AW bz AR
DS yA1a KM =T ni (11)
subject to the initial conditions
X0O0H Q, JIOH G, A00d 3 |, nidOHE G . (1.2)

Where O <, e, c,, 5,0, <1;X,y,Z and W are the state variables, and the parameters a , b,

b,,b; and C are real constants. Bifurcation studies show that when a=0.56, b, =1.0,b, =1.0,b, =6.0

, €=0.8 and a =0.95, the above system is hyperchaotic

The aim of this paper is to obtain the solution of the fractional order hyperchaotic system by the SHAM. This
modification of the standard HAM still contains a certain auxiliary parameter h which provides us with a simple way

to adjust and control the convergence region by the rate of convergence of the series solution.

2-Basic definitions

In these sections, we give some definitions and properties of the fractional calculus. Several definitions of fractional
calculus have been proposed in the last two centuries. There are many books [1-4] that develop fractional calculus
and various definitions of fractional integration and differentiation, such as Grunwald-Letnikov's definition,
Riemann-Liouville definition, and Caputo's definition and generalized function approach. For the purpose of this
paper, the Caputo's definition of the fractional differentiation will be used, taking the advantage of Caputo's
approach that the initial conditions for fractional differential equation with Caputo's derivatives take on the

traditional form as for integer-order differential equation.
Definition 2. 1. A real function /At @0 , Is said to be in the space Cs, PE R if there exists a real number

P @ % suchthat MIOEEL M where M OE OO, O ang it is said to be in the space C % if and only
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it M Conl N
Definition 2.2. The Riemann-Liouville fractional integral operator 1R of order ©X0, of a function

he C#,,u > —1 isdefined as

1
SRR \&@%OOESW 1R OH00

L AOE 0 2.1)

=8 s the well- known Gamma function. Some of the properties of the operator J“ , which we will need here,

are as follows:
1) J“IPh(t) = I“Ph(t),
@ J%I7h(t) = I7I°h(t),

(3) Jat;/_ T'(y+1) ta+y.

T T(a+y+l)

Definition 2. 3. The fractional derivative (D“) of h(t) inthe Caputo's sense is defined as

D*h(t) = ﬁj: t-2)"**h™()dr |, 02

forn-1<a<n, neN ,t>0, heC".
The following are two basic properties of Caputo's fractional Derivative [4]:

() Let heC",neN. Then D*h,0<a <n iswell definedand D“heC_,.

@ Let N&l GO N8 N and heC),u>-1. Then

(J“D“)h(t) = h(t)—nzh<k>(o+)tk—l. 2.3)

3. Homotopy analysis method (HAM ) for system of FDEs

Consider the system of differential equations in the following general form

N ). ..... U, (N |0, /Wl 2,....n 3.1)

with initial conditions at initial value:

Uy c,, kHl, ... n

where i are nonlinear operators, { denotes an independent operator and UK are the unknown functions.

We can construct the following Zeroth-order deformation for /dl1,2,....n
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Q =g@ 50; U=y, , (W " gl HWN€2D; qU. ..., 5D, g 2

where G 5 €,1- js an embedding parameter, hi %0 are auxiliary parameters, HAW™O0 e auxiliary
functions, L/ ED?O’@/-L G <1 gre auxiliary linear operators such that

L ;<2400 |0 when Z000. (3.3)

Generally, U,O(l are initial guesses, which satisfy the initial conditions and ¢, (t ;q) are unknown functions

where

00,008 1y W 20; 10y, W /|1,2,....1

3.4
and <K ;Q‘ can be expand in Taylor series, i.e
@}
2600; qOE Uy W= 1, WYy”, [®1,2,....1
where
T B LI O~ TIPS

If the auxiliary parameters hi , the auxiliary functions H M the initial approximations Up€®  and the

auxiliary linear operators L areso properly chosen the series (3.5) converges at ¢ il then, using (3.4) the

series (3.5) gives

&)
u, O up W= 1, W  HEL2,....n
ma (3.7)

Let us, we define the following vectors

U7 QN QU W ... 0, W THL2,....n (38)

then differentiating (3.2) M times with respectto G , setting g =0 and dividing by M we have the mtf. -

order deformation equation

L/‘)//mm,@%u,'md‘m Hh,—/—/,—(llR,-mOffmd,ufmd, ...... ,U;?mﬁ() (3.9)

where
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m ; 7 NV , 530,
Rim 1md"gmaa ------ "fnjmaoﬂ Oni/ltb : ;;fgi = qt»p,@,
(3.10)
and
0 m<1,
sl 1 @1
m .
(3.11)

Applying the Riemann-Liouville integral operator J “ on both side of Eq. (3.9), and using ( 2.3) The mth -order

deformation equations (3.9) gives

n& i
Ui VO B 1, WO, () uj{,‘,’de% CEhHMOR U, o U G

o (3.12) 4.

Application
To demonstrate the effectiveness of the method, we consider the system of nonlinear fractional initial-value problem

(1.1) with the initial conditions (1.2) by choosing the linear operators

L1430, gD 4] 0; g
L. <20, g E D40, g
L:€Q0; > E D €2 0; g
L4€30; g @D €40, g @)

With the property L <=0,/ H1,2,3,4 where C, are the integral constant and the nonlinear operators are

defined as

N €2, 3, 3, G MDA 2 =a 23 =19,
N,€2, 3,3, BMD? G =4 134,
N:€2, 3, 3, 3@ DR 3 b, 4 b, 2 Eb, 4
Ni€2, 3, 3, 3 DP 3 =3 =c 3.

Choosing H;(t) =1 for i=12,3 and 4, the zeros-order deformation equations are

Q 0@ LD QU= WO N, &4, 5, 3, 5
Q2 =q0 , LD, V=) WO HEH LN, 4, 3, 3, 5
A =@ 320, V=2 WD H LN €4, 3, 3, 3>
Q =@ , €40, V=2 WD EH LN, €3, 3, 3, 3> 42)
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where

20:00 600 20: 1LOFE W
20:006 ), 0 20: 106 W
20:00d 200 30; LOH AW
20,008 1w MW 20; 1OH w3

Then, the mth -order deformation equations become

where

I—16“/77‘!,5.77)(/7721"\»thle‘}%;d;ﬁdyzgdi W,‘;’;AQ
|—2§7'mm£§.nVymam»athzm‘}%d,y,a;ﬁ,ng, ngo
I—3€‘mm£§.nzm,@i‘l»a/73R3m‘l%d,y?;dyz%ﬁa ng()

)

L4e1/mw£§.nWm£§_‘l»E/"4R4m‘}€\;d,ﬁd,z;§d,W,;] (V) (4.4)

5 5 D D Q
le‘){njydvy\/mdlz;ydl W/\yyduaDt Xma E/mdy
ma

P ) 2
M

) v ’_L) (P @
Rsmﬂ‘,ﬁﬁ,yfond,z,},d, W,?,ﬁioﬂDr Zma E0 Yma EbDy Zpa [EDsWipa,

® o & Q
Ram®pss Yimas Zpas Wi OB D Wiy 25250 25CWipa.

The systems @.4¢ nave the following general solutions

X WOH OB, =1 Gy W= S8 @ ) 2N, 210U X4,
ma i

YOO By =1, =1, @) 22, i £ X Sy Ay Y,

@
Zn OO (W, szij@€91Ymd =0y Zima ED3 Wi 2= &1 2.,

W,,,(l)ﬁ(l,, (szi 4J@@fm£i ZCWmdg.n @/.].074 Wna. (4.5)

In this case, where X0 , Jo , 2 and Wb are constant, the general solution (4.5) is taking the following form



International Journal of Advanced Calculus
Vol. 1, No. 1, December 2013, PP: 01 -14
Available online at http://acascipub.com/Journals.php

®
XIVE G X (W)

m

©
Y G Ym
mid

®
A0EQ Zy O

melL

®
WOOE & Wi O
mel (4.6)

Substituting from (1.2) into .5€ and (4.6) we have

X, QUE /1,0, (B =a QUA,

y, QO /b, 3 @30@,
zOVE K G =0, G =b; QU4
w, QUE 1, ¢, O3 =c QU9

X WE 0 A Eh 08 =a QU Ehh e (B E «QUE zacs F (8 za QU4

YW oA Eh®EG F8EGU° Ehe 04 FGEGWT shyho(B «a QU4 ]
21 @@ G =h, & Eh, QUAE,

20E ;A EhUh G =0, @ Eh, QUR Eh by G @U@@ [=]
Mhubycy @ ec U 17207071@ b, @ [Eh; GUPY,

s OE 1,0, Q =h, G =c QUP = hy 01, G (=, @ Eh, QUPE =0l ;03 =c QWY

where

1 1 1 1 1
R N T R e R BT R IS R IS

1 1 1 1
" aa0® Y aga0® Vs rg o™ s g o

1
ER IR

1
B T

Then the HAM series solution @. 8Q=@. 11€ of the initial-value problem Q.100.2¢ c5npe given by

XOOHE X U= QU =00 Q=0T . L.

JOOR o M=), M=) M=) W= ...
Z0OE 2, M=% M=, W=7 Q=] .. ...
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To determine the value of h we plotthe h -curves for Egs. (4—6). it is noted that the valid regions of h

correspond to the line segments nearly parallel to the horizontal axis. HAM solution for Egs. (4—6) is not

effective for larger t . In case if we need the solution for €20~ then the idea is to divide the interval [0,20]
to subintervals with time step At and we get the solution at each subinterval. So we have to satisfy the initial

condition at each of the subinterval [21] and [23]. Accordingly, the initial values X,,Y,, Z,,W, Wwill be changed

for each subinterval, i.e. XV O G Hoxo, AYOdG Hyp , Ayod g |z and
vAY O @ B 16 and should satisfy the initial conditions Xn VOO0, y, 0O, z,0OH0 ang
WV OO forall m>1 so

XL QO /7, ¢, (8 esa & P <175

N QUE /L C, D) (83 G U =82,

200 /500, S (50, @ [ZD; & 0P =< €53
WA OO /1y €, O esC &) P o< €H

X QUE A0 A Eh U8 =2 Q'S Eh o B E «QU =8 zac I =za W« 09,

Y WELAERWE FREWsrE o E0Q F8EW 0% =h (8 za QW =34 [
2h @& @ =h, @ b, QU = B8,

2ERA kU G =h, G Eh QW t'$ Ehhbi ) 0Q F8EW W8 =
Iy by 01, O3 =0 QW = $-E [ZR b, 00, G [=h, G [Zb; QUM =109,

w, QU ¢, A Eh G =0 QU 'S =y hycy By G =h, G Ehy, QW =t B9 =l ;03 =0 QU ' G4, So. the

solution as follows:

(]
XOOH & X7 €D =<7 €D

Veg = N

(&)
YOoOE Q BNy v )

Vegl = 8

(&)
200 G Zn €7
Vegl = N

(]
VOO & Win €D a7 €D

Where t* starting from t, = 0 until Z» E 7 H20, the solution on every subinterval of equal length At,

the value of the following initial conditions:

G HXPV08 V98 HAV0Q Emro

By assuming that the new initial condition is the solution in the previous interval, then the initial conditions of this

interval <%, fiz= will be as



International Journal of Advanced Calculus
Vol. 1, No. 1, December 2013, PP: 01 -14
Available online at http://acascipub.com/Journals.php

9
Q HXQOHEH ) X0 =1, Q
=)

9
S HRVOR P Yy =14 Q

=)

9
Q BAVOHE) Z€) =1, O
o)

9
Q dRVOR @ W) =t O
D (4.7)

Where @,@,@ and @ are the initial conditions in the interval € , fi@=

5. Results and discussion

The system parameters are given as a=0.56,b, =1.0,b, =1.0,b, =6.0, and € H0.8 | with initial state
(0.7,0.1,0.3,0.1) throughout the paper. When @ HG H&G H& H1 | h =h,=h,=h, =1,

thena 4D integral-order hyperchaotic system is given. And its phase portraits are shown in Figs. 2 and 3.
Fig. 2: shows the three dimensional ( 3D ) phase portrait of the integral hyperchaotic system, which

represents the X — Yy —Z space. Fig. 3 depicts the two-dimensional ( 2D ) phase portraits of the system.

Also, When Q@ HGQ HQ HQ H0.95 ang /1 H/p /s H/A B, then obtained the ( 3D )

and ( 2D ) phase portraits of the fractional-order system as hown in Figs. 4 and 5, respectively. These figures

clear show that the fractional-order hyperchaotic system exhibits chaotic behaviors. Fig. 6. The time wave

form XM and X,(t) of the two hyperchaotic systems with different initial conditions, where

D, 16, %, M OE.7,0.1,0.3,0.1Q ang X, 15, 2, W, OHi€.2,0.6,0.8,0.5U



International Journal of Advanced Calculus
Vol. 1, No. 1, December 2013, PP: 01 -14
Available online at http://acascipub.com/Journals.php

= 0.8
0.4
D.4 -
Ko P,
0.2
01 0.2
2 -L§ -1 050 2 -5 1 05 0
B :
0
-0.Z g _
0.4 na AT
S X: o 4 ™,
g (0.0 g g Wy b /
3 0.2 /
-1.2 0.1 K
1.4 K
2 15 -l -DE 0 s

Figure 1: 22— curve of [X], , 8 and ¢+ for t=0.0land  =0.95

3\

Fig. 2. 3D phase portrait of an integral-order hyperchaotic system
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Fig. 3. 2D phase portraits of the integral-order hyperchaotic system.
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Fig. 4. 3D phase portrait of the fractional-order hyperchaotic system in Eq. (1.1).
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Fig. 5. 2D phase portraits of the fractional-order hyperchaotic system in Eq. (1).
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Fig. 6. The time waveform of the two hyperchaotic systems with different initial conditions
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6. Conclusion

In this work, it is clear how HAM can be applied to a system of FDEs. Moreover, we obtained a family of solutions
where some of them are specially the solutions obtained by the HPM. Also, HAM vyields a very rapid convergence
series in most cases as indicated by the studied examples, to illustrate the efficiency and accuracy of the method.

The results show that HAM is powerful mathematical tool for solving systems of linear and nonlinear FDEs, and

shows that the system 0. 100.2¢ displays rich dynamic behaviors, such as hyperchaotic.
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